Vascular Tissue

Challenge

Solving the vascularization barrier
for thick tissue engineering

Vascular Tissue Challenge

Nasa Logo
Prize Logo

This challenge will rally scientists worldwide to produce viable thick-tissue assays that can be used to advance research on human physiology


The Vascular Tissue Challenge is a $500,000 prize purse to be divided among the first three teams who can
successfully create thick, human vascularized organ tissue in an in-vitro environment while maintaining meta-
bolic functionality similar to their in vivo native cells throughout a 30-day survival period. NASA's Centennial
Challenges Program is sponsoring this prize to help advance research on human physiology, fundamental space
biology, and medicine taking place both on the Earth and the ISS National Laboratory. Specifically, innovations
may enable the growth of de novo tissues and organs on orbit which may address the risks related to traumatic
bodily injury, improve general crew health, and enhance crew performance on future, long-duration missions.


The Vascular Tissue Challenge rules are currently open for public comment.
If interested in this challenge, please provide your feedback by using the link below.

Click here for Press Release>

PrizeOverview

  • 1 cm thick human tissues
  • Active blood perfusion
  • Functioning Parenchymal Cells
  • 30-day trial length
  • 3 successful trials
  • $500,000 in awards from NASA

OfficialRules

The Vascular Tissue Challenge will be
evaluated by a Judging Committee of well-
qualified, independent and impartial
experts.

The first registered team(s) to meet the
required guidelines and complete their
trials by September 30th, 2019, will win
the awards.

All requirements are noted in the
Official Rules and challenge operations
are governed by the Team Agreement.

Download
the RulesPDF Icon

Have Comments?
Email Us.

Prize Registration

1

To register, please download and complete the Intent to Participate form. Teams wishing to participate must submit the form a minimum of three months before starting trials.

3

Upon official recognition, Vascular Tissue Challenge Prize teams will be asked to submit their Team Agreement and Executive Summary at least two months before starting trials.

2

Please complete the form and
submit it to info@neworgan.org.

Intent to participate form>
4

Team Trial Application documents must be submitted to the judging committee at least one month before trials begin, on a date agreed upon with the judging committee.

PRIZE FAQS

Prizes focus attention on critical challenges to create revolutionary advances in technologies. Although grants are critical in helping researchers move forward, prizes have been shown to coalesce a community of practice, increase public engagement, and inspire new problem solvers to participate in overcoming the challenges at hand in new and effective ways.

Well-executed challenges have launched entire industries in the past, such as the Orteig Prize won by Charles Lindbergh in 1927, which transformed U.S. aviation. Among other things, good prizes can attract new capital to seemingly intractable problems, motivate top minds and non-traditional players, galvanize public demand, force regulatory reform, encourage smart risk taking, and help transcend perceived constraints.

For this challenge, the Methuselah Foundation (the New Organ Alliance's fiscal sponsor non-profit charity) and the National Aeronautics and Space Administration (NASA) entered into an agreement to help advance the State of the Art (SOA) in the tissue engineering field. It is expected that the challenge results will become part of a portfolio of technologies pushing the boundaries of this field. The Methuselah Foundation's New Organ Alliance is responsible for the development and execution of the challenge. The Challenge is incentivized by a NASA-provided prize purse not to exceed $500,000.00 (five hundred thousand U.S. dollars) paid directly by NASA to the Challenge winner(s). Prize money will be allocated into separate pools and distributed in accordance with a pre-determined method as detailed in the Challenge rules.

It is expected that this Challenge will result in game changing technologies that will enable broad ranging new research leading to capabilities to repair and replace tissues and organs damaged from all kinds of impairments. The capability to vascularize tissues has been noted as the "holy grail" of tissue engineering.

Currently, research is limited to engineering thin-walled tissues and organs such as the trachea, esophagus, and bladder. The ability to get nutrients through a blood flow into thick metabolic tissues (such as organs, not just connective tissue like tendons and cartilage) to keep them alive and functioning for long periods of time has as of yet eluded researchers.

This challenge will revolutionize our ability to create thick, metabolic tissues that can be used to advance new research on thick-walled organs such as the heart, kidneys, lungs, or liver. It will enable new tissue assays and constructs that can be used in drug testing and disease modeling. It could open up a revolution in how we handle organ damage and impairment, on the Earth. NASA's interests also include the use of those tissues for the study of environmental effects (like radiation) and testing of potential mitigation strategies needed for long term deep space missions.

Around the world, millions of people need replacement organs, and many die before finding a suitable donor. In the United States, the wait list has skyrocketed while the number of available organs has stayed relatively flat. Even those fortunate enough to find an organ in time face serious medical difficulties, often for the rest of their lives.

The growing field of regenerative medicine offers many potential solutions, but it is drastically underfunded compared to more established areas of medicine. The Vascular Tissue Challenge will enable incredible new research and development to advance the capabilities needed to significantly reduce the organ shortage.

Tissue engineering research has currently been limited to engineering thin-walled organs such as the trachea, esophagus, bladder, or connective tissues such as cartilage and ligaments. Researchers have been limited by the diffusion of nutrients into the cells. Without a capability to produce vascular networks to deliver these nutrients into thick tissues, the cells will rapidly degrade and die off. Thick-tissue vascularization will allow researchers to create tissues with active blood channels capable of delivering the nutrients the entire tissue needs.

In 2015 the Methuselah Foundation's New Organ Alliance worked with the White House Office of Science and Technology Policy and the National Science Foundation to host a Roadmapping Workshop and Roundtable on Ending the Organ Shortage. During the Roadmapping Workshop, thick-tissue vascularization was identified as one of the critical enabling challenges in tissue engineering that would be required to be overcome to produce the tissues and organs for patients in need.

NASA's long term interests include the use of vascularized tissues for the study of environmental effects (like radiation) and testing of potential mitigation strategies needed for long term deep space missions. The Challenge could potentially advance research on human physiology, fundamental space biology, and medicine taking place both on the Earth and the ISS National Laboratory. Research has demonstrated potential enabling benefits of microgravity on tissue engineering technologies. Specifically, new technology innovations may enable the growth of de novo tissues and organs in orbit which may address the risks related to traumatic bodily injury, improve general crew health, and enhance crew performance on future, long-duration spaceflight missions.

NASA's Centennial Challenges Program partners with non-profit organizations (called Allied Organizations) to execute competitions in technology areas of interest to NASA and the Nation. Interested no-profit organizations with expertise in targeted areas provide NASA proposals for partnerships. Through its New Organ Alliance, the Methuselah Foundation has critical expertise in Tissue Engineering, prize development and operations that served as the basis of NASA's selecting Methuselah as the Allied Organization for this challenge. In 2014, NASA and the Methuselah Foundation's New Organ Alliance began exploring the possibility of creating a tissue engineering challenge that would be of interest to both the space agency and our healthcare industry here at home. In 2016, a Space Act Agreement was signed between NASA and the Methuselah Foundation for the development of the Vascular Tissue Challenge.

Although NASA is currently the sole prize sponsor, providing the entire $500,000 prize purse, the Methuselah Foundation's New Organ Alliance maintains close connections with many leaders at the NIH and other federal agencies. Experts from NIH, DoD, HHS, and others have been consulted in the development of the prize rules, and may be participating in the official Judging Committee. The New Organ Alliance also encourages collaboration on this and other prizes, teams competing for the prizes are provided with advice and guidance on potential research grant opportunities that may be used to help facilitate the development of their technology for this challenge. Additionally, the challenge requires that participants adhere to NIH guidelines for the creation and handling of their tissues.

The New Organ Alliance's Scientific Advisory Board reviewed the inclusion of many different types of tissues for the Vascular Tissue Challenge. One key requirement was the need to develop tissues for thick-walled organs such as the heart, liver, lung, and kidneys. Additionally muscle was included in this group because of the widely varying size of muscle tissues. Connective tissues such as cartilage and tendons do not require as much blood supply of nutrients to remain functioning. Therefore, the technology hurdle here was considered to be already achieved. The development of new bone tissue was in somewhat of a grey area, and has not currently been included in the allowable tissues. However, researchers can petition the Judging Committee to include additional types of tissue in the prize, if they can show that the technology hurdle remains due to an inability to produce vascular flow of nutrients to the entire tissue.

A review panel of experts from the New Organ Alliance's Scientific Advisory Board, and additional experts across the Tissue Engineering industry provided insight and guidance on how to evaluate a team's tissue to determine if it actually has produced viable integration of a vascular network capable of delivering nutrients throughout the tissue, and producing functions similar to those of a healthy, native organ of the same type. The criteria selected were determined to allow the judging committee adequate review of the team'trials to determine a winner based on these criteria. Evaluation criteria were posted for public comment for 6 weeks in March and April 2016.

Judges are selected from the New Organ Alliance's Scientific Advisory Board, the NASA tissue engineering community, and other researchers who have demonstrated their expertise in the tissue engineering fields.

One goal for this challenge is to begin to expand the knowledge of the potential enabling benefits of spaceflight on tissue engineering. Another goal is to use the tissues developed from this Challenge to support human exploration of space as well as to investigate the potential role of microgravity to develop larger and more medically useful engineered tissues for terrestrial as well as NASA benefit. Teams are asked to create a spaceflight experiment concept to draw the connection between spaceflight research opportunities and the laboratories who may be interested in future experiments on the International Space Stations National Laboratory. The Center for the Advancement of Science in Space (CASIS) will be using these concepts to evaluate teams that may receive an additional award to actually take an experiment that would advance their research in tissue engineering to the Space Station.

All requests for information about prize operations, team registration, or other activities related to the prize should be directed to the New Organ Alliance at: info@neworgan.org. All inquiries related to NASA's involvement in the prize should be directed to Monsi Roman, Director of the NASA Centennial Challenges Program: monsi.roman@nasa.gov

A Vascular Tissue Challenge Summit will take place in late 2016 for the purpose of inviting prospective team members to compare notes and form teaming arrangements among themselves. Prospective team members are encouraged to join with others who have complementary capabilities and ideas, ideally to form the best competitive team. Summit registration information will be available on the Challenge website in the near future.

RULES FAQS

Yes, a definition of "Blood Perfusion" has been added to the rules that allows for any perfusate that "can provide oxygen, remove carbon dioxide, maintain pH balance, prevent edema and oxidative damage, and maintain tissue viability and function (e.g. Wisconsin Solution, Whole Blood or similar)."

Parenchymal cells should make up 85% of tissue volume, not including the naturally occurring open space of a native tissue. The goal of this restriction is only to ensure that the tissue is not composed majorly of connective, non-parenchymal cells. The tissue structure should be equivalent to that of a native tissue of the same type.

Yes, cells from human biopsy will be acceptable for the Vascular Tissue Challenge.

Webinar

Vascular Tissue Challenge Introduction Webinar

The Vascular Tissue Challenge is a $500,000 prize purse for the creation of thick, human vascularized organ tissue in an in-vitro environment that maintains metabolic functionality similar to in vivo native cells throughout a 30-day trial period. The Methuselah Foundation's New Organ Alliance and NASA's Centennial Challenges Program have partnered to create this challenge with the goal of advancing research on human physiology, fundamental space biology, and medicine taking place both on the Earth and the ISS National Laboratory.

Additionally, the Center for Advancement of Science in Space (CASIS) will be providing an additional "Innovations in Space" Award covering $200,000 in hardware costs and the launch costs to send one team's vascular tissue experiment to the International Space Station that could further their research in the field.

This introductory webinar is for anyone interested in potentially competing for the Vascular Tissue Challenge. In the webinar we discuss the following items:

  1. Introduction to the Methuselah Foundation, New Organ Alliance, and NASA Centennial Challenges.
  2. Goals of the Vascular Tissue Challenge.
  3. Rules & evaluation criteria review.
  4. Innovations in Space Awardresearch opportunity using microgravity environment onboard the ISS.
  5. Processes and Procedures to compete.
  6. Question & Answer session.

About NASA's Centennial Challenges

NASA Centennial Challenges were initiated in 2005 to directly engage the public in the process of
advanced technology development. The program offers incentive prizes to generate revolutionary solutions
to problems of interest to NASA and the nation. The program seeks innovations from diverseand non-
traditional sources. Competitors are not supported by government funding and awards are only made to
successful teams when the challenges are met.


In keeping with the spirit of the Wright Brothers and other American innovators, the Centennial Challenge
prizesare offered to independent inventors including small businesses, student groups and individuals. These
independent inventors are sought to generate innovative solutions for technical problems of interest to
NASA and the nation and to provide them with the opportunity to stimulate or create new business ventures.


The President's budget request includes $4 million per year for Centennial Challenges prizes to allow
further growth in the scope and range of prize competitions and even greater opportunities for the citizen-
inventor to participate in NASA's research and development.


MediaKit

Download
Media KitPDF Icon

Have Comments?
Email Us.

Privacy Statement

Personal information supplied to New Organ is used solely for internal purposes and will never be supplied to any third party. Individuals
visiting neworgan.org may elect to receive occasional email communications including updates concerning our progress, opportunities to
participate in projects, and general communications related to our activities. Receiving such emails is purely voluntary and may be unsubscribed
from at any time by contacting us at info@neworgan.org or by clicking "unsubscribe" in any unwanted email.